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Finite-Size Effects in Surface Tension. 
I. Fluctuating Interfaces 
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We consider a two-dimensional Ising cylinder of circumference M and height N, 
with a floating interface introduced by the appropriate boundary conditions. An 
exact analysis of the finite-size effects in surface tension is given and the scaling 
function for all temperatures is calculated. The results are compared with the 
Monte Carlo data of Mon and Jasnow. 
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1. I N T R O D U C T I O N  

The stat is t ical  mechanica l  behav io r  of a doma in  wall ( interface) between 
coexist ing phases  in a confined geomet ry  is a subject  of cons iderable  
theore t ica l  impor t ance  in cons t ruc t ing  definit ions of surface tension which 
are amenab le  to exact  invest igat ion.  In  this paper ,  we are concerned with 
one such definit ion,  due or iginal ly  to Fisher,  (~) which has been par t ia l ly  
invest igated elsewhere. (2/ O u r  interest  in this a rea  was rekindled  by the 

M o n t e  Car lo  inves t igat ion of M o n  and Jasnow (3) of surface tension and  in 
pa r t i cu la r  the ampl i tude  ra t ios  (believed to be correct  for a rb i t r a ry  d imen-  
sion d),  

= ( 1 . 1 )  

where the nonuniversa l  ampl i tude  z0 is associa ted  with the cri t ical  behav ior  
of  the surface tension z ~ Zo t~, with t - ( T o -  T)/T~.  Similarly,  the correla-  
t ion length behaves  as r ~ ~o t -v .  The number  c(d)  is la t t ice- independent .  

t HLRZ-KFA, Postfach 1913, D-5170, Jtilich, Germany. 
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The critical exponents are related by Widom's scaling relation ( d -  1) v -- #. 
This was derived (4) by a local fluctuation analysis using equipartition and 
dating from before the demise of the van der Waals theory of the interface 
structure; exact calculation for the planar Ising model established 
rigorously ~s) that the interface fluctuates for all subcritical temperatures, 
making Widom's analysis incomplete. Thus, a nonlocal definition of surface 
tension appeared desirable, and several were given and proved to make 
sense. (s) One such, based on symmetry-breaking or Dobrushin boundary 
conditions, (6) gives (1.1) directly from duality for d =  2, with c (2)=  1/2; we 
shall return to this point later, after mentioning the finite-size scaling 
ansatz for the surface tension; this is (s) 

z = ~o t~Z(Ltvc) (1.2) 

for a lattice of size L, where the function Z(x)  satisfies Z ( o o ) = l ,  
S (x)  ~ x ~/v for small x; the number c depends on the lattice type, but 
Z'(x) is thought to be a universal function for each dimension. Such scaling 
forms are of crucial importance if one wants to extract thermodynamic 
limiting information from necessarily finite-size Monte Carlo data. For  the 
2D system, Mon and Jasnow (s) used the form (which we will show to be 
an approximate one) 

B 
Z(x )  = 1 + -  (1.3) 

X 

with # = v = 1, to fit their Monte Carlo data. We will derive the exact form 
of Z'(x) in (1.3) for the geometry used by Mon and Jasnow; we also con- 
sider other finite-size properties of fluctuating interfaces. Some of the results 
presented here have been previously published in shorter form. (7) 

To specify the problem, consider a ferromagnetic Ising model on a 2D 
square lattice wrapped on the cylinder of length N and circumference M. 
The nearest-neighbor couplings parallel to the cylinder axis are K1, while 
those in the other direction are K 2. (Throughout this work we will 
always assume T <  Tc, unless otherwise stated, as in Section 5.) The + -  
boundary conditions at the faces of the cylinder in the thermodynamic limit 
N ~  0% M--,  0% with M and N appropriately related, for low enough tem- 
peratures, induce exactly one domain wall with probability one. Similarly, 
the + + boundary conditions induce no domain walls in the same limit. 
It is crucial here that N should not grow too fast with M. 

Thus, a potential definition of the surface tension (per spin, scaled by 
ks T) is 

r = lim T(M, N), M, Nrelated (1.4) 
M , N  ~ c o  
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where 
! ( Z ( + )'] 

z(M, N) = - ~ In 
JVI 

(1.5) 

with Z being the partition function, and the superscript specifying the 
boundary conditions. The amplitude relation (1.1) for this definition is not 
an obvious consequence of duality. Indeed, the dual of Z + / Z  ++ in (1.5) 
is a Wilson loop on a cylinder with free boundary conditions on its ends. 
This suggests (1.1), but does not help in the evaluation of the scaling form. 
In what follows we calculate exactly z(M, N) and analyze its finite-size 
behavior. In Section 2, we develop necessary mathematical preliminaries 
needed to express (1.5) in a form such that its finite-size behavior can be 
analyzed. This analysis is given in Section 3. Section 4 presents discussion 
of the behavior of the interface in the scaling limit. Here we give the com- 
plete form of the scaling function. Section 5 discusses the behavior of the 
interface for temperatures above T c. Finally, in the Appendix A we describe 
the evaluation of a useful infinite product, while Appendices B and C 
contain various mathematical details used in the analysis. 

2. D E V E L O P M E N T  OF M O D E L  

We start from the definition (1.5) for the finite-size surface tension. 
The appropriate partition functions in (1.5) can be evaluated by the use of 
the transfer matrix method. Specifically, (1.5) can be expressed in the form 

r(M, N) = ~ in + [ VNI + 

where we use the usual symmetrized transfer matrix 

V = V 1/2 V 1 V12/2 (2.2) 

with 

and 

V2--exp Z (2.3) 
j = l  

Vl=exp(- l"  24, 
j = l  

In the above, cr ~ (c~ = x, y, z) are Pauli matrices, while K* (i = 1, 2) is the 
dual coupling defined by sinh 2K i sinh 2K* = 1. (Note that, even though we 
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use the quantum mechanical notation, our model is fully classical.) The 
boundary states are given by 

a~l___)= +1_+) (2.5) 

for all j with 1 ~<j~< M. These states are constructed from the maximal 
eigenvalues of V2, written in terms of the spinors used in the usual methods 
of diagonalizing V. Note that V 2 commutes with the operator 

M 

PM = I~ (-or;) (2.6) 
j = l  

which is a rotation by n about the z axis, up to a factor. This has the 
important consequence that 

PM] + )  = ]--)  (2.7) 

if we define 

M 

1+_)=2 M/2 1-[ ( l ! @ ) 1 0 )  (2.8 
j = l  

where o-~10 ) = -10)  for al l j  with 1 <<.j<<.M. We now introduce the Fermi 
operators 

f j = P j  Laf ,  j =  1, 2,..., M (2.9) 

with 

) 

Pj= 1~ (-G;,), Po= 1 (2.10) 
k = l  

The transfer operator now takes the form 

Vz=exp K2 (fJ-fj)(fJ+l+fj+l)-PM(f~-fa~)(fI+fl) 
J 1 

(2.11) 

When projected onto the invariant subspace of PM, which actually selects 
the parity of the fermion number, Va becomes the exponential of the quad- 
ratic form 

V2= �89 +PM) V2(+)+ �89 V2(--) (2.12) 
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We introduce the transformed fermions by 
M 

F ~ = M  1/2 y, ei~,f~ (2.13) 
j = t  

where ei~M= ___1; the antiperiodic wavenumbers appear when PM is 
replaced by 1 as in V2( + ). Provided we deal exclusively with periodic or 
antiperiodic wavenumbers, it is easy to check that (2.13) is canonical. 
A simple exercise shows that 

14~ = [ I  [cOSOo(CO)+isinOo(eo)F*_o)F~] t0} (2.14) 
> 0  

with exp(icoM)= -1 ,  and 

14~ = F 0  * I-[ [c~176176 10} (2.15) 
> 0  

with exp(icoM)= 1 and 0o(CO)= (n+o))/2,  modrc, are indeed maximal 
eigenvectors of V2(+ ), respectively. Including the projectors in (2.12), they 
are also eigenvectors of V2 itself. Clearly, we have 

1 4 ~  - ) (2.16) 

14~ } = c[ + } + d ] -  } (2.17) 

Since the vectors are in different invariant subspaces of PM, we have 
( 4  ~ 14 ~ ) = O. Thus, 

ac + bd=O (2.18) 

Since PM[4~ ) =  _+[q~o_+_ ), from (2.7) we have 

a = b and c = - d  (2.19) 

which guarantees (2.18). Normalization gives 

14~ ) = 2-1/2ei~• + ) -+ I -  ))  (2.20) 

where ~o _+ are as yet undetermined phase factors. By equating coefficients 
of 10) in (2.20) for 14~ ) we have 

< r e  

e'~+ =2(M-1)/2(--1) M l-I sin(co/2); ei~ --1 (2.21) 
> 0  

from which it follows that 
e *~'+ = (-- 1) M (2.22) 
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In the case of 1~0 ) we equate coefficients of F~ t0 )  in (2.21), giving 

e io = ( -  1) i (2.23) 

Thus, (2.1) is reduced to 

T(M,N)=lln~PN(+)--PN(--); (2.24) 
[P~-+ ) + PN(- )J 

where 
PN(+) ((P~ VN(+) j o = _ _ l~_+) (2.25) 

are now in a form suitable for evaluation by the spinor method. A straight- 
forward calculation (see Appendix) gives 

PN( + ) = 1-I fu(0)) (2.26) 
> 0  

with exp(iN0)) = - 1, whereas 

PN(-- ) = exp N[7(0) + 7(~t)] l-I fN(0)) (2.27) 
> 0  

with exp(iN0))= +1, and we have assumed M to be even; the generaliza- 
tion to odd M is essentially trivial. In the above, 7(0)) is Onsager's 
function (8) given by 

cosh 7(0)) = cosh 2K* cosh 2K2 - sinh 2K~' sinh 2K2 cos co (2.28) 

with 7(0))~>0 for real 0). The function fN(0)) is given by 

fN(0)) = cosh N7(0)) + sinh N7(0)) cos 6*(0)) (2.29) 

where 6*(0)) is an angle of Onsager's hyperbolic triangle (s) given by 

sinh 7(0)) cos 6*(0)) 

= sinh 2K 2 cosh 2K* - sinh 2K* cosh 2K2 cos 0) (2.30) 

and 

sinh 7(0)) sin 6*(0)) = sinh 2K* sin 0) 

Using these results, (2.24) is reduced to 

I ~ T(M, N) -  ll } 
~(M, N) = ~r  In ( T(M, N) + 

(2.31) 

(2.32) 



Finite-Size Effects in Surface Tension. I 1083 

where 

T(M,N)=exp{~(~+-~)lnfN(o))} (2.33) 

where Z +  and Z -  are sums over co in (-re,  ~c] such that exp(iMo)) = - 1  
or + 1, respectively. 

From simple complex variable theory 

In fx(o)) = _T_M+ ~ do) In fu(o)) (2.34) 
_+ 2~z Jc ei~-g-_+ 1 

where C winds once around zeros of eiM"~_+ 1, but not around any 
singularities of In fu(o))" The last step is feasible, as we shall show in the 
next section. Inserting (2.34) into (2.33) gives 

do) 
T(M, N ) =  exp { -  4~i c (2.35) 

which is the key equation for analyzing finite-size effects. Before going on 
to that, however, let us return briefly to (2.1) and (2.24) and (2.25). It is 
often stated that the surface tension is given just by studying the ratio of 
the two largest eigenvalues. There is, however, no reason in the spectral 
decomposition of V(+) N in (2.24) and (2.25) why the difference between 
higher-order terms in the dispersion should not dominate the lowest ones 
in the asymptotics. Further, the matrix element (~o_+ I~_+ ) would have to 
be investigated carefully and this would demand a thorough analysis of the 
thermodynamic-limiting procedure. Fortunately, Eq. (2.26) contains an 
implicit summation of the dispersion series and it is to the analysis of this 
product that we return in the next section. 

3. ANALYSIS  

Using the even character offN(o)), (2.35) becomes 

T(M, N) = exp }-~ J_ ~ + i~ sin ~/o) In fN(O)) (3.1) 

for ~ > 0  small enough. Using (2.29), In fN(O)) has logarithmic branch 
points whenever 

cosh NT(o)) + sinh Ny(o)) cos 6"(o)) = 0 (or oo) (3.2) 
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With (2.30)-(2.31), (3.2) becomes 

e2N.e(o~ ) - - . =  _1 (e ~ - A )(e r - B) 
A B ( e ~ - A - I ) ( e T - B  -1) 

(3.3) 

where 

A = exp [2(K2 + K*)] ,  B = exp[2(K2 - K~' )] (3.4) 

We expect 2 ( N +  1) solutions to this equation in the variable e ~ 
First, note that if z = e ~ is a solution, then z-1 is also a solution, and that 
e -"  = _1 are solutions. We seek solutions for 0 ~< T <  T~: For 7 = it, te 9t, 
(3.3) becomes 

where $'(e)) 
Onsager(8): 

exp(2Nit) = exp[2i6 '( t )]  (3.5) 

is another hyperbolic-triangular angle introduced by 

sinh V(co) cos J'(co) = sinh 2K* cosh 2K1 - cosh 2K~' sinh 2K1 cos co (3.6) 

and 

sinh 7(co) sin J'(co) = sinh 2K2 sin co (3.7) 

We take the branch of (3.6) and (3.7) with IJ'(t)t ~< ~. It is easy to see 
that J ' ( l r )=0 ,  J'(co) is 2u-periodic, and that 5'(0_+ ) =  +m  Equation (3.5) 
is of the form 

N t - j z t  = 6'(t) (3.8a) 

where j is any integer. Looking for a solution in (0, re), it is clear from an 
elementary fixed-point argument that there is a unique solution for each 
integer j on [0, N] with 7tj/N< t j<Tr( j+  1)/N. For j =  _+1 it is clear that 
t = 0  is also a solution. On [-Tr ,  0), for integer j on I - N ,  0], there is a 
unique solution with r ~ ( j - 1 ) / N <  tj<rcj/N, but that t j = - t  j. Note the 
special case teN = rc (mod 2re). Thus, we get 2N complex unimodular solu- 
tions of (3.3) for e 7, and the solution e ~ = +1, completing the set. As far as 
(3.1) is concerned, e 7 = _+1 do not generate logarithmic branch points and 
are thus trivial. Provided ]cos 5'1 >0,  one can check that the Newton-  
Raphson procedure for root location converges rapidly: (3.5) gives 

t j=-~+ N + 0  -~5 (3.8b) 
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for j = 0 ,  1,..., 2 N -  1. Equations (3.5) and (2.28) give 

cosh 2K1" cosh 2K2 - cos tj (3.9) 
cos coj = sinh 2K* sinh 2K 2 

Clearly o)j is pure imaginary (in the strip [9~co I ~< re): if co = iv1, then 

c o s h v j = c o s h 2 K l c o s h 2 K * - s i n h 2 K l s i n h 2 K * c O S ( N ) + O ( 1  ) (3.10) 

Thus (3.1) gives 

T(M, N) = exp M ~ dv 
j=l  (N) sinh- Mv (3.11) 

by analyzing the behavior offN(C0 ) round its branch cuts. The integral is 
basic, giving 

T(M, N) = exp In tanh ~ My i (3.12) 
= 

We shall examine some special cases of this formula: 

Rosult I. M--, oo, N fixed: Since for j =  1, 2 , . . . ,N-  1, we have 
v j+ l>  vj, only Vl appears, i.e., 

lim l l n ( T ( M ' N ) - l l )  
Mr ~ M T(M, N) + = -v~(N) (3.13) 

Referring to (3.10), we have 

cosh v l (N)=cosh2(K1-K*)+s inh2K 1 s i n h 2 K * ~ - ~ + O  ~-~ (3.14a) 

from which, provided 4N(KI - K*) >> 1, that is, the system is much wider 
than the correlation length, 

Vl(N)=2(K1-  K * ) + u ~ - 7  +O ~ (3.14b) 

The first term on the right is the Onsager surface tension. (8) In the second, 
we have 

sinh 2K1 sinh 2K2" 
u -  (3.15) 

sinh 2(K1 - K*) 
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so that 1/u = - tc is the surface stiffness coefficient. This 1IN 2 term is the 
"entropic repulsion" advocated by Fisher and Fisher ~9/using random-walk 
arguments. We provide a rigorous derivation here for the planar Ising 
model. What this does is to specify random-walk parameter values deter- 
mined from molecular-level considerations. An equivalent approach is via 
a solid-on-solid, or capillary wave, model ~5~ which may be thought of as a 
gedanken renormalization of the interface between two extremal Ising 
ferromagnetic phases, replacing bare spin-spin coupling by the stiffness 
coefficient u. Our qualification on (3.14b) provides a physically-anticipated 
limit to validity of the random-walk type of theory. Note also that (3.14) 
agrees precisely with the capillary-wave prediction. 

It has been known for some time ~17) that the interface of length M has 
fluctuations of the order of ~ in extent about its mean location. Thus, 
we anticipate crossover behavior if the limit M--+ c~, N--+ ao is taken so 
that N/M 1/2= o~ is fixed. 

Result 2. For ~ > 0 and K1 > K* we have 

lim M[r(M,  ~ M m ) - 2 ( K 1 - K * ) ]  
m~oo 

= - l n  ~ expE-(rcj)2u/2~Z]-F(~) (3.16) 
j= l  

Intuitively speaking, this result follows easily from the large-M asymptotics 
of (3.12), 

IT(M, N ) -  PI <~ PM1/ze 3A4~0 (3.17a) 

P = e x p  2 e -Mvj (3.17b) 

Equation (3.10) gives 

c o s h v j ( N ) = c o s h 2 ( K 1 - K * ) + s i n h 2 K l s i n h 2 K *  1 - cos-~ (3.18) 

so for j ~ N, we have, roughly speaking 

~2j2 
vj(N) = 2(K~ - K*) + u 2N 2 (3.19) 

valid provided j ~ N[2(K1 - K * ) / u ]  1/2, and so 

T ( M , N ) - I  [-exp(-Mvo)] ~ [ -  U ( 7~2j2~1 (3.20) T(M, N ) +  1 -- exp \-~72 ] j  j= l  
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from which Result 2 follows directly. In Appendix B we give a complete 
derivation of (3.16). 

For  ~ small, the first term in the sum (3.16) dominates, giving 
F(c 0 = 7c2u/2cd; this recaptures (3.14). For c~ large, the Poisson summation 
formula gives F(c 0 = In c~ + O(1 ). 

Result ,3. If the height N of the cylinder grows faster, say as eM ~ 
with 6 > 1/2, then we get 

r(M, c~M ~) = v0 + --M-- + 0 (3.21) 

Result  4. If N =  eM ~, 5 < 1/2, then we get 

u=2 ( 1 ) 
r(M, c~M*)~Vo +-M-Tg + O (3.22) 

which is consistent with the entropic repulsion idea. 
The reader will no doubt have noticed that the physical thinking 

behind the first few results is that there is a single domain wall induced by 
the + - boundary conditions on the cylinder. This could be investigated by 
determining the magnetization along the cylinder in finite geometry: the 
number of changes of sign of the magnetization is the number of domain 
walls. Such a study is feasible in principle, but the details of the calculation 
are beyond the scope of this article. 

If the cylinder height N grows sufficiently fast with M, or indeed if M 
is finite but N ~ o% we expect domain walls to proliferate. [The potential 
proliferation of domain walls was anticipated by Fisher et al. (1~ and placed 
on a more precise footing by Privman and Fisher (m and Brezin and Zinn- 
Justin. (12) The result (3.25) below is rigorous.] Thus, it is possible that 
T(M, N) diverges, giving a vanishing surface tension. Equation (3.17) con- 
tains a key to this: as N ~  o% the sum in (3.17) can be approximated by 
a Riemann integral. First, (3.18) and (2.28) give v j (N)~(7c j /N) ,  where 
is as 7 in (2.28), but with KI and/s interchanged. Thus, 

N e - My(~ de) (3.23) T(M, N ) ~ e x p  ~ -~ 

Suppose now N = e TM, with 2 > 0: as M ~ 0% we have 

(3.24) 



1088 Abraham and ~;vraki6 

Result 5. We have 

lim r(M, eaM)= {0 for 2>~2(0) (3.25) 
~ ~ ( 0 ) - 2  for 0~<2<7(0) 

Although the full treatment of the domain-wall content in this system 
is beyond the scope of the present article, we can give two elementary 
explanations of (3.25). 

Intuitively, the asymptotic decay of the pair correlation function 
~r(1, 1)o'(1, y ) )  along the axis of the cylinder is governed by A1/Ao, 
where A0> A~ > --. are the eigenvalues of the transfer matrix along the 
cylinder axis. The correlation length is (m 

which gives 

1 
~ll - ln( Ao/A1) (3.26) 

~lt ~ ~-MeM~ (3.27) 

Thus, if N ~  e M~, we get a single domain wall, whereas if N ~  e T M  with 
2 > r, the number of domain walls should diverge with M. 

Another argument is to say that the domain walls do not cross, so that 
they can be regarded as fermions in one dimension. The partition function 
for n of these in a length N is roughly " N Zo(M)(n), where Zo(M ) is the parti- 
tion function for a single loop on a cylinder of circumference M when free 
translation has been suppressed. Studying the n which maximizes this 
partition function leads back to the same picture. 

4. S C A L I N G  RESULTS 

Let us scale the cylinder dimensions by the appropriate correlation 
lengths for the bulk phases with T<  Tc. Wu ~13) showed that the correlation 
lengths along the axis (~tt) and perpendicular to it (~• are given in the 
bulk by 

1 1 
i l l -  4 (K2-  K*) '  ~-- - 4 ( K 1 - K * )  (4.1) 

We take the scaling limit N, M ~  ~ with T---, T~ (i.e., K~'--, K 2 )  such 
that N = N/~ t l and M = M/~• are fixed. We define this limit as s-lim. 

Let us examine the scaling behavior of (3.12) and (3.2). It is easy to 
see that if 

u = sinh 2Kc { s-lim ( ~( O ) ) t = 2 { s-lim ( og~ • ) } (4.2) 
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where s-lira is extended to the coupled limit also with ~o ~ o% then (3.2) 
becomes 

E2 cosh (1 + u2) ~/2 + (1 + u2) ~/2 sinh (1 + u2) ~/2 = 0 (4.3) 

This only has solutions nontrivial in the sense of the branch cut analysis, 
if (1 + u2) ~/2 is pure imaginary. Denote 

Then (4.3) becomes 

( l  -}- U2) 1/2 = q-izj (4.4) 

~z 
tan ~ -  = - z  (4.5) 

and vj=(l+z2) 1/z. Note that for each zje(rcj/N,~(j+l)/~C),~with 
j =  1, 2,..., there is a single solution of (4.5), so that, for any N, M > 0 ,  
convergence of the product 

S(M,N)=s-limT(M,N) I-[ coth ( i f / ( 1 ;  z2)) ~/2 = (4.6) 
J 

is assured. Thus, we can construct a scaling limit from (2.32): 

~ ( M ,  N ) =  s-lim 2~• ~(~r177 ~ r ~ , , ) = 2 1 n  (S(M, N)+ 
2S(37/, ~r) _ i ) (4.7) 

Notice that the critical coupling values only enter the results through ~ll 
and ~a, which, of course, are not required a priori to be equal. 

We now examine various limits. 

1. N large: from (4.5), fo r j~N- ,  we have z~=2~zj/N, so (4.6) gives 

S(M,N)~ [I coth 1 + ~ - )  J ) (4.8) 
j = l  

which with A4 large simplifies to 

- - - -  N oo ~l  _.~_X2)1/21 dx} S(M,N)~exp{~f_ exp[--~(1 

1 + -  exp (4.9) 
(7~]~r) 1/2 
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Inserting in (4.7) gives 

- ~ 2 (2(Tz~f) t/2 ~ g(M, U)~ ln \ e J2) 

= 1 + ~ l n  + O  (4.10) 
M 

2. fir ~ 0; we have zj ~ (2j + 1 ) u/fir, for j = 0, 1,...; the condition zj > 1 
necessary for this approximation to (4.5) is assured by ~ r ~ 0 .  Equation 
(4.6) reduces to 

- f i  l + q  2n+1 
S ( M , N ) =  I I  _q2,+~ (4. l l)  

n ~ 0  1 

where q = exp(-u217//2fir); here we make no restrictions on h4 other that 
M > 0 .  This product can be evaluated exactly in certain cases, including 
2~ = fir, as described in Appendix A. We note that 

from which 

S(fir, fir) = (1 + ~ ) 1 / 2  + O(fir) (4.12) 

- ~ 2 ( ( 1 + x / 2 ) 1 / 2 + 1 )  
o~(N, N ) ~ = l n  + O(1) (4.13) 

N (1 + x/2)  '/2 - 1 

as N-~ 0. In Appendix A, we also consider the small-N" correction to this 
formula, obtaining 

2 ( ( 1 + x / 2 ) ' / 2 + 1 1 )  + ~(fir, f i r )=-zln  +,~/2 (1 x ~ )  1/2 ln(1 +xfl2) 
N \ (1  + ~/2) 1/2- ~z + o(fir) 

(4.14) 
This gives 

3.05714184 
Y ( ~ ,  ~ )  = 0.6164715 + (4.15) 

fir 
Mon and Jasnow (3) used the scaling ansatz 

B 
~ ( N ,  N ) ~  1 +--z (4.16) 

N 

with the numerical estimate of B to be B = 2.58172. The leading term is a 
good approximation for small ~r, but the large-fir behavior has to be 
modified: from (4.10), 

~(fir, fir)~ 1 ln fir ( 1 )  - --~-- + o (4.17) 
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4 

F(N,N) 

I I ! 

r I 
7.5 15 22.5 30 

SCALED SIZE 

Fig. !. Plot of the exact scaling function ~(?~, ~) vs. ~r (full line), the Mon-Jasnow scaling 
ansatz (crosses), and the small-N expansion (dots), obtained from (4.15). Also shown is the 
large-~ r approximant (dots), for N>  8, Eq. (4.17). 

We thank Fisher and Gelfand for pointing out a numerical error in ref. 7, 
which is corrected in (4.17); it is the coefficient of the (ln ~r)/.g-term. 

This term has an interesting origin, which we will analyze further in a 
later publication. Anticipating this, if we consider a transfer matrix around 
the cylinder, with fixed opposite spins at each end, then the capillary wave 
contribution arises precisely from the one-fermion sector. 

The plot of the full scaling function from (4.7) and (4.6) is shown in 
Fig. 1. Also shown is the approximant (4.15), compared with the Mon-  
Jasnow scaling ansatz (4.16). 

5. SUPERCRIT ICAL FINITE-SIZE EFFECTS 

Returning to (3.3) and (3.4), it is clear that, when T >  T~, B <  l. This 
means that ~ ' (0)= 0 [rather than 5 ' (0)= g, which obtains for T <  Tc] and 
that there is a real solution for e ~ given approximately by 

e /~ = B + 2 B 2 X e  2(& XD(cosh 2K2" -- cosh 2K1 ) sinh 2 2K 2 + O(B 4N) (5.1) 

which gives 

V 0 = K B  N + O ( B  2N) (5.2) 
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with 

~c = 2 sinh 2K2 (cosh 2K~ - cosh 2K~* ) (5.3) 

There are also unimodular solutions for e /, which behave much as 
those in the T<  Tc case and are therefore dominated in (3.12) by the real 
one, giving 

2 
T(M, N) ~ - ~  B-'V (5.4) 

which diverges with N, giving 

z(M, N) ~ ~B N (5.5) 

There is a crossover scaling function around the critical point between 
the T <  Tc and T >  T c regimes which can be obtained by scaling the lengths 
in (5.4) and adding in the contribution from the unimodular eL We omit 
the details of this calculation. 

A P P E N D I X  A 

In this Appendix we evaluate the infinite product 

i~i 1+q2~+1 
~ ( q ) =  1 _q2n+T (A.1) 

0 

by appealing to the theory of theta functions as discussed by Whittaker 
and Watson. (14) It is a standard result (found in connection with the 
spontaneous magnetization in Yang (15)) that 

~03(0 I "s 1/2 (A.2) 

~'(q) = LO4(o ] z)J 

where q=exp(~iz)  defines z, and 0~(zlz) are the standard theta func- 
tions. (16) It is also known that 

03(0Iv) 1 
~4(01~) (1 - k 2 )  ~/4 (A.3) 

where k is the modulus of the complete elliptic integrals, which are related 
by 

'(k) 
- -  = - - i z  (A.4) 
S(k)  
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This is a problem in the book by Whittaker and Watson/14) In our case, 
with 2~= ~, we have q = exp( -= /2) ,  so that r = i/2. Thus we have to solve 
the equation 

2 Y ' ( k )  = s  (A.5) 

This is a particular example of a remarkable result of Abel, (m which we 
quote without proof: 

T h e o r e m .  Let 

S'(k) 
x(k)  +dv4 

(A.6) 

where a, b, c, d, and n are integers. Then k is a root of an algebraic equa- 
tion with integer coefficients. Equation (A.5) is obviously such an example. 
It turns out that 1 - k  2 = ( , , , ~ -  1) 4. Using (A.3) and (A.2), the result (4.8) 
finally follows. 

We now give a more refined estimate of the function S(M, N). For 
small ~, the roots of (4.5) are, up to O(1) terms, 

u (2 j+  1) 2 
zs ?~ + u(2j+  1) (A.7) 

Inserting this in (4.6) gives 

~ - { ~ 22e-;'~(J+'72) } 
S(M,N)=ga(2) 1 - ~ r  u ( 2 j + l ) [ 1 - e  2;.(j+,/z)j 

0 

(A.8) 

where 2 = M/N. Consider the Fourier series 

2rt ~ q" +1/2 sin(2n+ 1) zcu 
s n u = ~ - ~  o 1 - q  2"+~ 2af" (A.9) 

Integrating the right-hand side gives 

f:- 4 ~ q" + 1/2 1 
snudu=--s o 1--q  2"+12n+1 (A.10) 

from which we have 

q~+~/2 1 ~ (l +k) 
~ 1  - q" + 1/2 n + 1/2 = In \ 1 - ~ - k J  
0 

(A.11) 

822/63/'5-6-19 
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To make contact with (A.8), we put q = e -x=, which is not the same as that 
in the product analysis above. The parameter k in (A.11) is given by 

s - auf ' (k)  (A.  12) 
aUf(k) 

For 2 = 1, we have k = l/x/2, giving 

Thus, 

e ~(j+ 1/2) 1 1 
1 2e---2~<)'-~i/2)j + 1/2 - 2 ln(1 + x/2) (A.13) 

0 

S(_N, N) = ~(1)  { 1 - ~-~ ln(1 + .x~)} (A.14) 

Inserting this in (4.7) gives 

2 (g~(1) § 1~ xf2 ~(1)  ln(1 § xf2) 
,,~(~, ~)--_=_in + (A.15) 

\ ~ ( 1 )  l J  N 7~ 

with 

~a(1) = (I + x ~ )  '/2 (A.16) 

A P P E N D I X  B 

From (3.12), Taylor's theorem with remainder gives 

N - - I  

T ( M , N ) - I - 2  ~ e iv~(N) 
1 

N-- 1 -- 2Mvj(N) + e--V~(U) (B.1) <<.d~  e 
1 ", 1 

where d and f depend on Mvmi n and are bounded whenever Mvmin > 0. 
We now examine (3.18), obtaining 

v j ( N ) - 2 ( K ~ - K * )  2 \ N ]  <~c (B.2) 

provided K 1 > K* strictly, for some c > 0 uniformly in j. We have 

N 1 
e Mvs(N)=-g 2M(K*-K~)Q(M,N) (B.3) 

1 
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where 
N 1 

Q(M,N)= ~ e-M(v, (N~ o~oo, 
1 

Bringing in (B.2) and (3.18) gives 

1095 

(B.4) 

Q(M, ~ m  1/2 ) 
1 e x P L - 2 t , ~ ]  J 

1 t 7 )  exp L-- 2 (B.5) 

for e > 0  and some g > 0 ,  again by Taylor's theorem with remainder. 
Finally, we have 

Q(M, eM 1/2) - F ,  exp - 
1 

~< ~ +  dxexp - (B.6) 

from which Result 2 [Eq. (3.16)] follows immediately. 

A P P E N D I X  C: C A L C U L A T I O N  O F Z  + -  

For canonical transformations the identity 

F*_<oF 2 + F~oF_o = G*~oa~ + G~a_o~ (C.1) 

is easily established. 
Let us define 

U+(0) = exp i ~ + t O<~(F ojFo~ + Fo~F_<o ) (C.2) 

where the sum is on co e (0, ~] such that exp(iMco)= - 1  (we take M even). 
Then 

I~~ ) = U+(Oo)10) = U + ( - 5 " 1 2 ) I f + )  (C.3) 

using ~$*=2(0 -0o )  and an obvious group property. Expanding 
U + ( - 5 " / 2 )  using (C.1) and the vacuum property Go, I @ + ) = 0 ,  with 
exp(iMco) = - 1, gives 

< ~  / 6" . 6" Ir176 ) =lq I,c~ G +'] . . . .  ) l,:b+ ) (C.4) 
>0 

from which (2.26) and (2.29) follow directly. 
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Since  M is even,  ~o = ~ satisfies exp( iM~o) = 1. E q u a t i o n  (2.27) fo l lows 

f rom the  a n a l o g u e  of  (C.4)  in this case. 
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